Employee working on the machine

The idea

JT Steenkamp had momentarily stepped away from his family’s Christmas festivities to read through some academic research papers. With his homeland of South Africa in mind, he was researching the potential of the chemical element vanadium as a viable solution for the challenges renewables projects can encounter without energy storage.  As he read, he grew more confident that this was an idea worth exploring.

“Renewable energy is intermittent; it is only generated when the wind is blowing or the sun is shining so it can’t be turned up and down like natural gas or coal so it doesn’t necessarily coincide with the time of day when you want to turn your kettle on,” explains JT.  “Because of those intermittency issues, the grand system of renewable energy needs an energy storage solution, to store energy during times of surplus, like you would grain in a granary, and to release it in times of need, just like a water reservoir might.”

It seemed to JT that vanadium could very possibly be one solution to this problem. It turns out, in the Alberta oil industry, vanadium is largely viewed as a nuisance, a metal contaminant that negatively impacts the upgrading of oil sands.

Observing its potential for usage as an energy storage battery, JT has worked to change the perception of this oil-sands by-product and, in doing so, brought together stakeholders from academia, industry and government to study the opportunity in more depth.

“This project is truly a team effort,” says JT. “Without the group we’ve assembled at Shell to manage the project, the input from academic institutions such as the University of Alberta and University of Calgary, and the generous support we’ve received from the Province, this idea would have remained just that, an idea, not the promising pilot it has become.”

Funding from Alberta Innovates has allowed Shell to commence a field demonstration that will use this locally-sourced waste vanadium electrolyte from Albertan oil-sands to benchmark an emerging vanadium flow battery technology. This could, in JT’s words, be “a game-changer for renewable energies globally.”

“Energy storage will play a key role in providing flexibility to Alberta’s electricity grid as we shift towards greater amounts of renewable energy’, says Maureen Kolla, Manager of Clean Power and Heat for Alberta Innovates. “Shell’s project enables Alberta Innovates to assist in the demonstration of an energy storage solution and the development of a key piece of that solution, the vanadium electrolyte. The vanadium electrolyte development has the potential to establish a new industry within the province. This type of project demonstrates Alberta’s competitive advantage and ability to lead in a low-carbon world. It’s projects like this that show we can successfully diversify our economy and reduce our environmental impact.”